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ABSTRACT
We discuss the concept of multiple recurrence, considering an ergodic ver-
sion of a conjecture of Erdds. This conjecture applies to infinite measure
preserving transformations. We prove a result stronger than the ergodic
conjecture for the class of Markov shifts and show by example that our
stronger result is not true for all measure preserving transformations.

Arithmetic progressions and a conjecture of Erdds

An arithmetic progression of length d in N is a d-tuple (z, 2, ...,z4) € N¢
such that zx = 21+ (k— 1)y (2 < k < d). The gap of the arithmetic progression
z+(k—1)y (2 <k < d) is y. Analogous definitions can be made in an arbitrary
commutative semigroup.

Evidently (z1,22,...,%q4) € N is an arithmetic progression iff zj + Tt =
2241Vl < k < d — 2. One of the longstanding problems in the subject is to
give “size” conditions on a subset K C N which ensure existence of arithmetic
progressions in K. For example, Szemerédi’s theorem (see [Sz]) states that a sub-
set of positive density contains arithmetic progressions of all lengths; and Roth’s
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theorem (see [R])) states that a subset K C N with |[K N [1,n]| > n/loglogn
contains arithmetic progressions of length 3.

Recall that Szemerédi’s theorem came as a partial answer to a conjecture of
Erdés ([Erx]):

K CN, Z 1/n = oo = K contains arithmetic progressions of all lengths.
neK

It is not at present known whether K C N, } . 1/n = oco implies K D
arithmetic progressions of length 3. In the sequel, we shall consider an ergodic
version of Erd@s’ conjecture.

The first methods of constructing progression-free subsets of N were the so-
called d-greedy algorithms (d € N). The d-greedy algorithm constructs a
subset G4 C N without arithmetic progressions of length d by successively in-
cluding every number, except for those which complete an arithmetic progression
of length d.

For d € N prime, G4 = Ky := {3 1o, ard®: ax € {0,1,...,d — 2}, ar — 0}.
This is because (a) each n ¢ K4 completes an arithmetic progression of length d
in K;N[0,n]U {n}, and (b) for d prime, K4 contains no arithmetic progressions
of length d.

Remarks:
(1) Let By, := (1k,(0),...,1k,(d™ —1)); then

By =1, Bny1 = Bn,...,B,0,...,0.
N e e msnet

d—1-times d™-times

This concatenation also defines a cutting and stacking construction of a measure
preserving transformation (see [Fr]) to which we shall return.

(2) The d-greedy algorithms do not provide large progression-free sets: |G4 N
[1,n]| < nlog(d=1)/logd whereas Behrend (see [B]) has constructed a progression-
free subset B C N with |BN [1,n]| >> n/ec\/lzg—" for some ¢ > 0.

(3) It is possible that some kind of a random greedy algorithm may provide
larger progression-free sets.

d-Recurrence

Let (X,B,m,T) be a non-singular transformation and let B € B, (here and
throughout for A C B we denote A, := {A € A: m(A) > 0}). Forz € X



Vol. 117, 2000 MULTIPLE RECURRENCE 287

consider the collection of visit times to B Vg, := {n > 1: T"z € B} and for
d € N let

By = By4(T)
:= {z € X: Vg, contains an arithmetic progression of length d + 1}
= |J{zeB:Va: D {kk+n,....k+dn}

kn>1

oo

oo d
=yJr*ynrrs
k=1 n=1 j=0

Evidently By = 0 iff B € B is a d-wandering set in the sense that
BNT*BnNn---NT~%*B =0 modm Yk > 1.

Using the non-singular property of T, we see easily that m(Bgy) > 0 if and only
it m(BNT-"BN---NT~%B) > 0 for some n > 1.

Accordingly, we call the non-singular transformation (X, B, m,T) d-recurrent
if for every B € By, 3n > 1 such that

m(BNT"BN-.-NT~"B) > 0.

Note that conservativity (Poincaré recurrence) is 1-recurrence.

If the non-singular transformation (X,B,m,T) is not d-recurrent, then 3 a
d-wandering set of positive measure, and indeed (see the Hopf d-decomposition
below), if T is conservative and ergodic, then X is a union of such sets modm.

We call (X, B,m,T) multiply recurrent if it is d-recurrent Vd > 1.

If (X,B,m,T) is an ergodic probability preserving transformation and B €
B, then by Birkhoff’s ergodic theorem, Vp ; has positive density in N for a.e.
z € X and therefore by Szemerédi’s theorem contains arithmetic progressions of
all lengths. This shows that m(Bg) = 1Vd > 1 and that (X, B, m,T) is multiply
recurrent. Furstenberg has given an ergodic proof that probability preserving
transformations are multiply recurrent and deduced Szemerédi’s theorem from
this (see [Ful] and [Fu2]).

The question now arises as to which infinite measure preserving transforma-
tions are multiply recurrent.

Roth’s theorem has an ergodic version: if (X, B,m,T) is a conservative, ergodic
measure preserving transformation such that

n-1
logl
limsup%ZleTk >0
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a.e. for some (and hence all) A € B, 0 < m(A) < oo, then T is 2-recurrent. This
is proved by applying Roth’s theorem to a.e. V4 .

We now return to the measure preserving transformation defined by the cutting
and stacking (see [Fr|) specified by the d-greedy algorithm (d prime) mentioned
in Remark 1 (above). This is a piecewise translation 7: R — R defined in stages
starting with the 0" stage where we have the unit interval E1(0) = I. At the
n'h stage, we have a “column” of disjoint intervals C = (E1(n), ..., E4gn(n)),
each of length 1/(d — 1) and a piecewise translation T: Ex(n) — Exy1(n) (1 <
k < d™ —1). At the next stage, we extend the definition of T by cutting the
column into d — 1 columns Cj: = (E{j)(n), e ,E((i{l)(n)) (1<j<d-1) where
each E,(cj)(n) is an interval of length 1/(d — 1)**! and T: E,(Cj)(n) — El(£1(")
(0<k<dv!, 1<j<d).

The (n + 1) column is

C' = (01,02, . -,Cd—laDn) = (El(n + 1), e ,Edn+1('n + 1))

where D, = (D;y(n),...,Dgn{(n)) is a column of disjoint intervals, disjoint from
each of the Ex(n) (1 < k < d") and each of length 1/(d — 1)"*1. The definition
of T is extended by defining T: Ex(n+1) = Exy1(n+1) 1<k <d**! —1) as
a translation where it was not already defined at stage n: i.e. for Ex(n + 1) =
EQ)(n) (1<j<d)and Ex(n+1)=D;(n) (1<j<d"—1). The union of all
the intervals used has infinite length and can be assumed to be R. The resulting
piecewise translation T: R — R is a conservative, ergodic, measure preserving
transformation.

The construction of T is given by the concatenation in Remark 1 above. Each
interval in each tower is either a subset of, or disjoint from the unit interval I,
and for each n > 0,

(m(Cr(n)|I),...,m(Can(n)|I)) = B,

where B,, is as in Remark 1.

It follows that (for d prime) m(INT*IN---NT~@D*[) = OVk > 1 (else
K; would contain an arithmetic progressions of length d) and T is not (d — 1)-
recurrent.

We claim however that T is (d — 2)-recurrent.

To see this, note first that if A € B(R) and 3N > 1, K C {1,2,...,d"} such
that A =i Ex(N), then m(ANT="AN---NT~@=D4" 4) = m(A)/(d - 1)
Vn > N + 1. Since any B € B with m(B) < oo can be approximated arbitrarily
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well by such sets, we have that

m(BNT ¥ Bn-..nT~@-24"By % asn — oo VB e B, m(B) <
and that T is (d — 2)-recurrent. This construction and generalisations thereof are
considered in [Ei-Haj-Hal] where they are represented as odometers (see §2).

Let ¢, |. Recall from [Kr] that a conservative, ergodic, measure preserving
transformation 7" is {¢, }-conservative if } - | ¢, foT™ = oo a.e. for some, and
hence Vf € LY. Note that {1}-conservativity is the same as conservativity.

The ergodic version of the Erd8s question is that {1/n}-conservative, ergodic
measure preserving transformations are multiply recurrent. It is not hard to show
that the Erdds conjecture implies the ergodic version. We do not know whether
the converse is true.

In §1 we prove the Erdds conjecture for Markov shifts. Indeed for Markov
shifts, slightly more is true:

{1/n%}-conservativity V0 < a < 1 implies multiple recurrence.

The proof is accomplished by showing that a Markov shift T is d-recurrent
iff T'x ... x T is conservative, and then showing that for a {1/n%}-conservative

N—_—

d-times

Markov shift, this is the case Vd < 1/(1 — a).

In §2, we see that the general situation is different, exhibiting some examples
of “infinite odometers”.

One such exhibit is a conservative, ergodic measure preserving transformation
which is {1/n%}-conservative VO < a < 1 but not 2-recurrent. This is constructed
using Behrend’s sequences ([B]).

We conclude this introduction with a “d-analogue” of the basic Hopf decom-
position, proving a “Hopf d-decomposition”. Recall from [Fu2] that an IP-set is
a set of form {} ;. pnkg: FF C N|F| < 0o} where ny < ng < --- is a prescribed
sequence.

ProprosiTiON (“Hopf d-decomposition”): If (X,B,m,T) is a conservative,
aperiodic, non-singular transformation and d € N, then
(1) X =€, UDy mod m where:
Cq = €4(T) and D4 = D4(T) € B are disjoint, T-invariant sets, D4 is a
countable union of d-wandering sets, T¢, is d-recurrent and

> mBNT*BN---NT %*B)=00 VBEBy, BCC,.
k=1
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(2) If A € B, A C €4(T) and m(A) > 0, then the collection of d-recurrence
times of A: {n>1: m(ANT "AN---NT~A) > 0} contains an IP-set.
(3) Ca(T?) = €a(T) ¥p > 1.

Proof: Suppose first that B € B, and that

o o]
> mBNT*Bn---NT~%*B) < co.
k=1
We show that B has a d-wandering subset of positive measure.
Indeed, for some subset By € By N B, AN > 1 such that

m(BiNT*Bin---nT~%*B;)=0 Vk>N.

By Rokhlin’s tower theorem (see e.g. [Fr]), 3E € Bsuch that E,T-'E,... . T-VE
are disjoint, and

N

—k m(Bl)

m(X\UT E) <=
k=0

It follows that 30 < i < N such that

By =B NT'E € By.
Clearly Vk > N:
m(B; NT *Byn---NT *B))y<m(ByNnT*Byn---nT~%B;) =0,
and for 1 < k< N,
m(BoNT*Byn---NT~%By) <m(ENT*E) =0.

The collection Wy = Wy(T) of d-wandering sets (under T') is a T-invariant,
hereditary subcollection of B. A classical exhaustion argument shows that 394 €
B, a countable union of d-wandering sets, such that any W € Wy satisfies W C D4
mod m. Since T~1W,; = W,, we have that T-1D4 C D4 whence by conservativ-
ity T 194 = D4 mod m.

By the first part of the proof, if B € Band } ., m(BNT*Bn---nT-%B) <
00, then B C D4 mod m, whence €4 := X \ D satisfies statement (1).

To show (2), fix A € B, m(A) > 0, A C €4(T). Choose ny > 1 such that
m(ANT™AN---NT 91 A) > 0and set 4; := ANT™MAN---NT 9MA
Since A; C €4(T), 3Ing > n; such that m(A,NT"2A;N---NT~"2A4,) > 0. Set
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Ay = AinNT ™A N---NT~%2 A4, and continue, finding ny, < nz < ng < ---
and Ajz, Ay, ... € B such that

Ay =Ar 1NT ™A, _1N--- ﬂT_dnkAk_l, m(Ak) >0 (k> 2).

If F C N is finite, write ' = {k; < ky < --- <ks_1 <ks}, Np:= ) cp k-
We have that ANT-MrAn---NT~Nr A > Ay, whence

m(ANTNF AN -NT~NFA) > m(Ag,) >0

and Np is a d-recurrence time of A.

Finally we turn to the proof of (3). Let p > 1. Evidently €4(T?) C €4(T). To
show €4(TP) D €4(T) let A € B, m{(A) > 0, A C €4(T). It suffices to show that
3 n > 1 divisible by p such that m(ANT"AN---NT~9"A) > 0.

To do this, let n; < ng < --- beasin (2). Weclaim 3 F C {1,2,...,p+1} such
that N is divisible by p (else p > I{E,{zl ngmodp: 1 <J <p+1} =p+1).
Thus, N = pv and we have that

mANT AN -NTPPYA) =m(ANTNFAN...NTNFA) >0. &

Remark: In [Fu-Kat], it is shown that if S is a probability preserving trans-
formation, then the set of d-recurrence times for any set of positive measure
intersects with any IP-set.

Thus, if (X,B,m,T) is d-recurrent, (2,.A,p,S) is a probability preserving
transformation and A € By, B € A;, then 3 n >.1 such that both
mANT "AN.---NT~9"A4) > 0and p(BNS™"BN---NS"¥"B) > 0. It
is therefore natural to ask whether T x S is d-recurrent; and more generally
whether any extension of T' is d-recurrent.

1. Markov shifts

The (two-sided) Markov shift (X, B, m,T) of the stochastic matrix P: §x S —
[0,1] with invariant distribution {u,: s € S} is defined by
X = SZ, T = the shift, B the o-algebra of generated by cylinders of form

[301---a5n]k = {iEEXZ Thtj ZSJVOS] S'n,}’

and

m([so, e 7sn]k) = HsoPsoys1 " "Psn_1,8n"
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It follows that (X,B,m,T) is a measure preserving transformation. It is well-
known that T is conservative and ergodic iff P is irreducible and recurrent (see
[Ch], and [A]). We'll call T mixing if the corresponding stochastic matrix P is
irreducible, recurrent and aperiodic.
Let (X,B,m,T) be the conservative, ergodic Markov shift of the stochastic
matrix P. For d > 1, the Cartesian product transformation T x --- x T is either
——

d-times

conservative or totally dissipative (see [A], [Kak-P]). It is the Markov shift of the
stochastic matrix ¢P: §¢ x §¢ — [0, 1] defined by

d —
P(s1,..,8a),(t1,-sta) = Psit1 - - - Psajta

and therefore T x - -- x T is conservative iff ¢P is recurrent, i.e.
(R
d-times

o0
z p‘(;fs)d = oo for some, and hence all s € S.
n=1

Qur main result in this section is

THEOREM 1.1: Let d > 2. A conservative, ergodic Markov shift T' is d-recurrent
< T x --+ x T is conservative.
N———
d-times
The = direction is easy. By the d-decomposition, the d-recurrence of T implies
that

Zpgls)d = %Zm([s] NT™s|N---NT™"[s]) =00 Vs€S,
n=1 S n=1

whence conservativity of T x ... x T'.
—_—

d-times
The « direction is established using a weak, local d-ergodic theorem on states

(below).
Let (X, B,m,T) be the Markov shift of the stochastic matrix P: §x S — [0, 1].
Fixd>1, s€ S, and let A = [s]o. Normalise so that m(A) = ps; =1 and write

u(n) :=m(ANT "A) = pg’,'s), aq(n) = Zu(n)d.
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THEOREM 1.2: Suppose that T is mixing, and that S ;o u(n)® = oo, then
VBy,...,Bag€ BN A,

1 n
(%) > m(BonT *BynT *Byn---NT % By) — m(Bo) - - m(Ba).

COROLLARY 1.3: If 0 < a < 1 and T is {1/n®}-conservative, then T is

d-recurrent Vd < 1/(1 — a).
Proof (assuming Theorem 1.1): Fixing s € S and setting u(n) = pg"s,) , it suffices
to show that 3 0 u(n)? = oo Vd < 1/(1 — a).

To this end, suppose that d < 1/(1 — a) and 3 oo, u{n)? < oo; then ed/{d — 1)
> 1 and by Hélder’s inequality,

00 u(n) 00 1/d , oo 1 (d—1)/d
d
S < (Yu) (X ) <
n=1 n=1 n=1
whence
- 1
Z — 14T <@
n=1 ne
a.e. on A contradicting {1/n®}-conservativity of T 1

Proof of Theorem 1.1 (assuming Theorem 1.2): Fix B € B, m(B) > 0; then
3s € § such that C := BN [s] has positive measure. Let the period of s be v;
then T"IUw p-nv[s) I8 @ {1/n®}-conservative, mixing Markov shift.

n=0

(nv)

¢ = 00 where u(n) := psys , and

By conservativity of T'x ... x T, >->° u(n)

d-times

by Theorem 1.2,

1 n
mCNT*onT*Cn.-.-nT~*C) — m(C)*. 1
ad(n); ( ) (C)

The rest of this section is a proof of Theorem 1.2.
Let

Cz{[s,tl,...,tn,s]oznZO, ti,...,lpn GS}
and

N
A={|]J Bi: By,..., By €C disjoint}.
k=1
It follows from the conservativity of T that A generates BN A in the sense that

VBeBNA, €>0, 3B € A:m(BAB')<e.
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LEMMA 1.4: (%) holds for By,...,B4 € A.

Proof: 1t is sufficient to show that (x) holds for By, ..., B; € C. Suppose that
B =1[s,t{,...,t%) sy (0<j<a),
and that £ > n; V0 < j <d; then

m(BoNT*B, n---NT~%By)

= . (k—nq) | . (k=n1) ., p{k—n4-1) el
TP (0 Py® (Ps,s Py Py Pss Ps,s Dyp(@ " Py

—m(Bg) - - m(Ba)u(k — no) - - u(k — na_).

To complete the proof of the lemma, we must show that

n
Zu(k —ng)---ulk —ng_1) ~ aqg(n) VYng,...,nq-1 €N.
k=1
By Holder’s inequality,

n

Z u(k —np) - - -u(k — ng_1) < aq(n).
k=1
We now establish the reverse asymptotic inequality.
The Cartesian product transformation § := T x...x T is a measure pre-
(A

d-times
serving transformation of the Cartesian product space (X¢, By, 1) where By :=
g

B®---@Band p:=mx...xm. It is also a Markov shift of an irreducible,
N’ N, e’

d-times . d-times
aperiodic transition matrix.

The condition Y o0, u(n)? = oo implies that S is conservative and ergodic
(its stochastic matrix being irreducible and recurrent), whence rationally ergodic
with return sequence a4(n) (see [A]). Since A% := A x ... Xx A is the event of

————’

d-times
being in a certain state at time 0, we have ([A]) that
n—1
Y WBNST*C) 2 w(B)u(Claa(n) VB,C € Ba.
k=0

Choosing C = A% and B=T"™"AXx T ™A X --- x T""-14 gives

n n—1

Y u(k —no)---u(k—na—1) ~ Y p(BNS*C) 2 aa(n). B
k=1 k=0
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Next, for 0 < v < d, let

P ZH1A0T ik H1AoTJk

k=1:1=1
Note that
/¢(”)dm Zm T*AN---NT*ANANT *AN...NT~@Vk*4) = q4(n).
k=1

LEMMA 1.5:
/(wif’)?dm =0(aq(n)?) asn—oo WO<v<d
A

The proof of Lemma 1.5 is given after the proof of Theorem 1.2.

Proof of Theorem 1.2: Our first claim is
§1 () holds for the sets By,..., Bq whenever By,...,B4 € A and By € BN A.
Fix By,...,Bq € A, and let

n d
ZH B; OTjk.
k=1j=1

It is sufficient to show that

P

aq(n)

— m(By) - --m(By) weakly in L?(A).
By Lemma 1.4,

dm — m(B)m(B:)---m(Bs) VB e A.

By Lemma 1.5,

[ @n)am < [ @0 am = 0(aun?),

whence for every subsequence n, — oo there is a subsequence (also denoted)
nx — oo and q € L%(A) such that

1

" akly in L(A
ad(n)fﬁk—wwe y in L*(A).
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It follows that
/ gdm = m(B)m(B,)---m(By) VB € A,
B

whence ¢ = m(B1) - - - m(By), and
1

pyren) ¢n — m(By)---m(By) weakly in L*(A). &

Our next claim is:
92 for each 0 < v < d, (*) holds for the sets By, ..., By whenever B, 1,...,Bg €
Aand By...,B, € BN A.

For each v, call the claim “Claim v”. We prove the claims by induction on v.

Claim 0 is 41, and established. Assume Claim v—1, and let B, {,...,Bg € A
and By...,B,_1 € BNA. Set

n v d—v
¢n =3 [[1Bci oT7*[] 15.,, 0 T*.
k=1i=1 j=1

It is sufficient to show that
bn

ag(n)

— m(Bo) - m(By_1)m(By41) - - - m(Bg) weakly in L?(A).
By Claim v — 1,
ﬁ /B $ndm —> m(BYm(Bo) - m(By_1)m(Bys1) - m(Bg) VB € A
By Lemma. 1.5,
(v) =
[ @wam < [ @m0 (auny?),

whence for every subsequence n; — oo there is a subsequence (also denoted)
nk — 0o and q € L?(A) such that

1
—n kly in L2(A).

It follows that

/B gdm = m(BYm(By) -+ -m(By_1)m(Buss)---m(Ba) VB € A,
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whence ¢ = m(Byg) -+ m(By—1)m{B,+1) - - - m(By), and

1
a—(—)¢n — m(B()) v m(Bu-l)m(B,,+1) AR m(Bd) weakly in L2(A)
d\n
Evidently, Theorem 1.2 follows from €2 when v = d. ]

297

Proof of Lemma 1.5: Throughout, we use the Markov property for {T™A},,cz:

if b(1),...,b(k) € Z and b(1) < b(2) < --- < b(k) then

"

K

N T—bm) - mm Tb<r>A) = [ m(AnT-t-br=1) g,
r=1

r=1 r=2
Set
ex(v) == H L4 o T7%;
—v<j<d—v, j#0
then
P = ZEk(V)a and /(1?7(1”))2617” < 222/ ex(V)ee(v)dm.
k=1 A k=1¢=k"A

The form of [, ex(v)e(v)dm depends on the orders of the
{ik,j: 1 < i, j < v} and {ik,jt: 1 <ij<d-v}.
To simplify matters, set

e (v) = H 140 TH,

J=1

then e (v) = €, (v)ef (d — v), and
/ ex(V)ep(v)dm = / (e (V)e; (W) (d = v)eg (d—v))dm
A A
and it follows from the Markov property that
/A(e,: (W)e; W)ef(d—v)ef (d—v))dm =
/ e'{(v)e?’(y)dm/ & (d—v)ef (d—v)dm.
A A

Accordingly, set
Qk, ) = Qq(k, £) = {ik, j£:1<4,j <d} CNyg.

Define N ¢y: Ng x {0,1} = Qq(k,€) by N e(j,€) = (1 — €)jk + €j¢.

sets
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Definition: A bijection w: Ng x {0,1} — N4 which satisfies w(i,€) < w(i +1,€)
(t<d—1, e=0,1) is calied admissible.
Let by denote the collection of admissible bijections w: Ng x {0,1} — Ngq4.
An admissible bijection w € by orders Qq4(k, ) if 1k < 7¢ iff w(i,0) < w(j,1).
For w € by, set

D(w) == {(k,#) € N%: k < ¢, w orders Qq(k,£)}.

To describe D(w), let

Fy:={p/a:0<p<q<d}
be the Farey sequence of order d. Write

Fd={0:=r(()d)<rgd)<---<r§\}i):1}.

d
We claim first that
(1) 3j < Ng, D) = {(k,€) e N°>: k/E € (rj,7531]}
To see this let

a(w) = max Z.(Z 0), & bw)= min I
+,j€ENg, w(i,0)>w(j,1) 1 i,j€Ng, w(i,0)<w(j,1) 1

Evidently, a{w) < b(w) are neighbouring elements of F;, and by definition,

P .
D(w) = {(k,0) N k<€, 5 < %Vw(i, 0) < w(j, 1), % > Z—,Vw(i,(]) > w(j, 1)}
k
={(k,£) eN*: k < ¢, a(w) < 7 < bw)} ]
Suppose that 1 < d' < d. It follows from (1) that Vw € by, 3w’ € by such that
D(w) ¢ D(v).
Given w € by, (k,£) € D(w), define W((‘,':')e): Nog — Qu(k, £) by

’K’E:,)e) = N(k,é) ow L.
Setting w™1(j) = (kj,€;), we have

mieny(§) = Ny 0w (9) = #5[(1 — )k + 5.
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Next, for 1 < j < 2d,
(w) 7@ ey
¢(k,g)(.7) Tk, e)( ) Tk, Z)(J — 1)

= K,j [( —_ J)k? + ejé] —Kj—1 [(1 - (:j._l)k + 6j_1€]
= <aja (k7€)>

where WE:)Z)(O) =0, a1 = (k1(1 — €1), k1€1) and

aj = aj(w) = (k;(1 — €) — wj_1(1 = €j-1),Kj€f — Kj—1€j-1) (> 2).
Qur next claim is

2d
(2) /Ae;:(d)ej(d)dm = H u({a;, (k,O)))V(k,£) € D(w), w € by.

=1

To see this

2d
(W) .
[ i@t @im=m(an (77 04)

i=1

[
au

m(ANT ko0 4)

<.
Il
-

i
e

u({aj, (k,0))- W

o
Il
a

The vectors {a; (w) 4, are non-zero. Indeed, if a1 = ( then ¢, = 1 = 0,
and if aj(w) = 0 for some j > 2 then it follows from the definition of a; that
w™l(§) = w™I(j — 1), contradicting the bijectivity of w.

If a; and a; are linearly dependent, then a; « a; in the sense that a; = ga; for
some q € Q.

We need to know that

(3) Vjo € Nog, |{] €N2d:aj O((Ljo}l <d.

Indeed, the vectors occurring as a; are of form (1,0), (0,1), (r, —s) and (—r, s)
where 1 <r,;s < d and we have

= (1,0) when 7"(& g)(.?) Kk, 7f§:)g) (G+1)=({x+ 1)k;
= (0,1) when WE:,)E) (9) = &b, ”(k e)( J+1)=(k+1)4
a; = (r,—s) when TI'E:’)Z) (4) = st, ”(k,l)(j +1) =rk;



300 J. AARONSON AND H. NAKADA Isr. J. Math.

a; = (—r,s) when ng)e)( ) = rk, ”(ke (F+1) = st
In case e.g. aj,,aj,,-..,85, X (r,—s) then Ip1,po,...,pn > 1, Pru # pur
(nu # V') such that

Ty (o) = Pust,  wiey (o +1) = purk

whence Nr,Ns < dand N <d/rVs. |

Consequently, for each w € by,
{aj(w): 1 <j<2d} = {a}" (), P w): 1< j < d}

where ag.l)(w) and a§-2) (w) are linearly independent V1 < j < d.

We have now established the necessary machinery to complete the proof of
Lemma 1.5.

Assume that v > d — v. For each w € b, let w’ € by, be such that D(w) C
D(w').

Since {(k,£) € N2: k < £} = U, cp, D(w) (a disjoint union), we have:

/ (@) )de<zZS“ / ex(v)ee(v)dm

k=1 ¢=k

=92 Z Z /Aek(v)q(v)dm.

w€b, (k,8)ED(w), k,L<n
For each w € b,

Z / ex(v)ee(v)dm

(k,£)€D(w)NNZ

= Z /ek W)eS (v dm/ & (d—v)ef (d—v)dm

(k,0)€D(w)NN2

2v 2(d—v)
= Y J]weiw),k0)) JI wlew),(k0))
(k,£}e D(w)NN2 j=1 j=1

- 3 Hu (@Y, (k, 0))ul(al?, (k, 0)))

(k,£)eD(w)NN2 j=1

n

where

{a (1) (2) 2d  _ {agl)(w (w) IU{a(l)(w) ?)(w/) 2d-v)

a; "85 " pj=1 j=1
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Consider B;: R? — R? defined by (B;z); = (x,ag-i)) (i = 1,2) which is
injective. Let K > 0 be such that || Bjzllec < K|/z||ooVe, j.
By Hoélder’s inequality,

/ ex(V)e(v)dm
(k,&)eD(w)nNZ Y A
d

H((k e) > u((ag-”,(k,e»)du«a;”,(k,e»)d)

j=1 €D(w)NN2

I > uwhe?)
=1 *k,£)€ B;(D(w)NNZ)

< Y uku

(k.0)eN,

:ad(Kn)z.

Py
d

IN

d

To complete the proof of the lemma, we must show that ag(Kn) = Ofaq(n)) as
n — 0.

To see this, note first that vx = uf is a recurrent renewal sequence and so
dl=¢y>cy > > cp |0 such that ZZ:O UkCn—k = 1Vn > 0. It can be shown
that

)<e2 Yn > 1

2
=
3
S |~
=
S

where L(n) := Z;S cx. It follows that for K > 1,

2. Infinite odometers

Definition: (b1,be,...)-adic odometer. For by > 1 define

[o 0]
Q=Qb1,ba,...) = [[{0,1,..., b5 — 1}.
k=1

Define addition on Q2 by

(w+w)p =wn +wh +€, modby,
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where
{ 0, n=1lorwy_1+w, 1+ €n—1 <bp-1,
€p =

1, n>2and wp—1 +wh_1+€n_1 > bp_1.
It follows (see [Hew-Ros]) that 2 equipped with the product topology is a compact
topological group.
It is called the (group of) (b1, bs,...)-adic integers since

Zy 2 Qy:i={we Q:w, =0} byw(—}ZB(n)wn

n=1

where B(1) =1, B(n) = biby---bp_1 (n > 2),
-—1(-—)({)1—1,62'—1,...)

and
“N2{weQb,—1-w, 30} =1 —1,ba—1,...) ~ Q.

The symmetric product probability measure is a Haar measure on {1.
The (b1, bs, . . . )-adic adding machine (or odometer) 7: Q@ = Qis 7z = z+1
where 1 := (1,0).

Now let 1 < b, (n > 1) and let T be the (b1,bs,...)-adic odometer on
Q(by,b2,...). Suppose that 0 € K,, C Zy N[0,b, — 1] (n > 1) and let W :=
{z € Q(b1,ba,... ) zn € K, Yn > 1}

Our first result in this section is that all points of W excepting possibly one re-
turn to W under positive iterations of T, and that the first return transformation
on W is itself isomorphic to an odometer.

Let a, := |K,| and write:

K, ={0=ty(n) < <tg,-1(n)},

(n, %) { tep1(n) —tk(n), k<a,-—1,
n =
o bp —ta,—1(n), k=a,-1.

Note that Q(a1,az,...) 2 W by = = (z1,2,...) ¢ t(z) = (t2,(1),t2,(2),...).
Accordingly, define A(n) (n >1) by A(1) =1, A(n) =a1a2---an_1 (n >2).

PROPOSITION 2.1: Suppose that z € $fa,az,...) and that {(z) :=
min{n > 1: z, < a, — 1} < 00; then

P(t(z)) = minfn > 1: T(t(z) € W} = p(l(z), Za(a))
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where
k-1

ok, §) =Y Bi)a(i,a; — 1) + B(k)a(k, j)

and
Tw (t(z)) := T*CED¢(z) = t(rx)

where T is the (a1, aa,. .. )-adic odometer on Q(ay,as,...).

Thus, the adding machine T with digits by, bs,... equipped with the o-finite
invariant measure m with m(W) = 1 is isomorphic to a tower over 7 (equipped
with Haar measure on 1) with height function ¢ as above (see [Kak]).

We call the measure preserving transformation (Q(by,bs,...),B,m,T) the
infinite odometer with digits b, b9,... and base sets K;, Ko, ....

Remarks:

(1) The measure preserving transformation “defined by the d-greedy algo-
rithm” is isomorphic to an infinite odometer with digits b, = d and base sets
K,=1{0,1,...,d—2}Vn > 1.

(2) The infinite odometer with digits by, be,... and base sets K, Ks,... is
isomorphic to the cutting and stacking construction defined by

By:=1, Bpy1=Bn(1k,(0)),Bn(1k,.(1),...,B.(1k, (by — 1))

where B, (1) := B, and B, (0) := 018~
(3) It can be shown that an infinite odometer is of positive type in the sense
that limsup,, ., m(ANT"A) > 0VA € B m(A) > 0 (see [Ham-Q)) iff

. 1
lim sup sup ——

Hre Kp:z+te Ky} >0
n—o0 tEN ,Knl

This is evidently the case when liminf,_,, |K,| < 00, in which case it can be
shown that the infinite odometer enjoys the stronger property of partial rigidity
in the sense of [A-F-S].
By corollary 1.4 of [A-F-§], all Cartesian products T x ... x T (d > 1) of a
(AR

d-times
partially rigid measure preserving transformation 7' are conservative.

The next proposition generalises this.

PROPOSITION 2.2: Suppose that (X,B,m,T) is an invertible, conservative,
ergodic measure preserving transformation of positive type, then T'x ... x T
g p g p yp

d-times
is of positive type (and hence conservative) Vd > 1.
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Proof: Fixd > 1 and let S := T x...x T be a measure preserving transfor-
S—————

d-times

mation of the Cartesian product space (X%, By, 1) where By := B® --- ® B and
N e—’

d-times
pr=mx .- X m.
N ———

d-times

Let
Zq:={A € By u(A) <oo,u(ANS™"A) - 0 as n — oo}

A classical exhaustion argument shows that 3Z; € B, a countable union of sets
in Z,4, such that any A € 24 satisfies A C Z; mod p. It follows that

w(BNS™™C) =0 VB,C€ByNZg(B), p(C)<oo

whence {A € B: A C Zyu(A) < oo} = Z4.
Since T™ X --- x T" Zy = Z¥(ny,...,nq) € 7%, we have that

T x .. xT™Z3 =24 modu¥(n,...,ng) € 78,

The ergodicity of this Z% action shows that either Z; = X dmod p or u(Z4) = 0.
Since sets of form A? (A € B,0 < m(A4) < oo) are not in Z4, we must have
that u(Z4) = 0. Thus S is of positive type. |

Thus, all Cartesian products of positive-type infinite odometers are conserva-
tive. The next proposition (2.3) shows, however, that this does not imply their
{cn }-conservativity for any {c,}.

PROPOSITION 2.3: For any c,, | 0, 3 a positive-type infinite odometer which is
{cn }-dissipative.

Proof: Choose b, > 2 such that cg(n) < 1/4" (where B(n+1) := by ---b,), and
let T be the infinite odometer with digits b, and base sets K, = {0,1}; which is
of positive-type by Remark 3 above.

On W, we have
> e oo 2kt1-1 [eS)
mn __ _ k
ILRTTTLND S 31 DRED S
n=1 n=1 k=0 n=2k k=0

where @, == Y 71—y o Tl
Now,

e )_{1’ {z) =1,
() = p((z), Te(z)) = i(_g—l B(k)(bx — 1) + B(£)(x), else,
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so (z) = 2B(¢(x)) - 1 > B(¢(z)) and

n

P (z) 2 > B(#(e)) = Y _2""*B(k) 2 B(n),

(€1,..,6n)€{0,1}™ {1} k=1

whence

[e.o] o0
}:cnlw oT™ < Z2kcB(k) < 00. |
n=1 k=0

PROPOSITION 2.4: Suppose that d > 2 and for eachn > 1, K, C [0, (b, — 1)/2]
and K, has no arithmetic progressions of length d + 1 in N, Then W has no
arithmetic progressions of length d + 1 in Q(by,ba,...) and W € Wy(T).

Proof: Suppose first that z,y,2z € W and that z —y = y — z in Q(by,bs,...),
equivalently z + z = 2y. Since wy, < (b, —1)/2 ¥n > 1, we have that (z + 2), =
ZTn + 2n and (Y + Y)n = 2y, V0 > 1. Thus z, + 2, = 2y, Vn > 1.

Next, suppose that N > 1 and = € (Yoo T *NW. Set z(k) = TFNz =
z+ kN € W. We have that 2(k+2) —z(k+1) = 2(k+1) —z(k) = N in
Q(by,be,...), equivalently:

k) +z(k+2)=22(k+1) (0<k<d-2).

By the above, Vn > 1,0 < k < d—2: z,(k)+z,(k+2) = 22, (k+1), equivalently:
Tp(k+2)—z,(k+1) =zn(k+1) —z,(k) and 2,(0),...,2,(d) are in arithmetic
progression. It follows from the assumption that z,(0) = --- = z,(d)Vn > 1,
whence z(0) = -+ = z(d) and N = 0 contradicting N > 1. ]

The rest of the section is devoted to the advertised construction of an infinite
odometer which is {1/n%}-conservative Y0 < a < 1, but not 2-recurrent.

LEMMA 2.5: Suppose that sup K,, < b,, and that b, > 2a,,; then

ai—2

(1) > ¢(k,j) < B(k),
j=0
n 1 ar—2
(2) T(n):=A(n) Y o) o(k, j) < B(n),
k=1 =0
Ant1—2
(3) I'(n) :=(n) + o(n+1,k) < B(n+ 1),
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(4)

wpl—

Vamnt+1) =L(n)+olar—1,...,an—1,Zpy1,...) = i L(n)+o(n+1,z041).
Proof:
(1) We have
ar—2 ap—2
> o Z(ZBZ—I zai—1)+B(k—1)a(k,j))
i=0 j=0 Ni=1
k—1 ak—2
= (& —1)Y_B(i—ali,a; — 1)+ Bk—1) > _ a(k,j)
i=1 3=0
whence
ar—2 ap—2
Y ek, §) > B(k—1) Y a(k,j) = B(k — 1)ta,—1 < B(k),
j=0 §=0
and
ar—2 k-1
> ok, ) < ax Z B(i) + B(k)
j=0
B(i
= Bk) +acB(k Zl Blk - 1
k=1
< B(k) +axB(k—1)) SR

(2) is seen thus:

since
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(3) is established using (1):

[(n) :=T(n) + i:_ @(n+1,k) < B(n) + B(n+ 1) < B(n + 1).
k=0

To see (4), for n > 1 write Q, := [[;_,{0,1,...,ax — 1}; then Yw € Q and
n>1,
{((TFW)1, .. (TF*w)n): 0 <k < A(n+1) — 1} = Q..
Moreover, if 0 < k < A(n+1) — 1 and (t*w); = a; — 1 (1 < j < n) then
(T*w); = w; Vj > n+ 1. It follows that

PA(n+1) = Z o(l(w), we(w))

(w1,..es wn)EQL N{(a1—1,...,an—1)}
+olar —1,...,0n — 1,wpt1,.-- ),

whence

Z (p(E(W), wl(w))

(W14 YEQ, N{(a1—1y0sa— 1)}

= D2 e m) € ) = R}l

3

ak—2

=Y aks1-..an Y ok, j)=T(n). &
k=1

=0

PROPOSITION 2.6: dc > 0 and a conservative, ergodic measure preserving trans-
formation which is {€°V'°82™ /n}-conservative and not 2-recurrent.

Remark: In particular, this conservative, ergodic measure preserving transfor-
mation is {}-conservative V0 < a < 1.

Proof: By Behrend’s theorem (see [B}), 3¢ > 0 and

Yn>1, 3K CNNJ[0,nl IKl:L(n)

without arithmetic progressions of length 3 where L.( ecVioe2m  We use
this as follows to define a suitable infinite odometer T.
The infinite odometer will have digits (by,b2,...) and base set W =

K; x K3 x --- where {K,| = a, and max K, < (b, — 1)/2. By Proposition
2.4 it will not be 2-recurrent.
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Set byp11 = 4 and Kopyq = {0,1}.

Next, we define K, and by,. For n > 1 set o, := 2”2; then ay,/n 1 co and
Yoo 0h ~ab Vs > 0. Set ag, = e and byp, = aznLc(agn). Using Behrend’s
theorem as above, choose sets Ko, C N(n > 1) without arithmetic progressions
of length 3 such that |Ks,| = agn, max Kop < bg, /2.

We claim that T is {Ls(n)/n}-conservative Vs > ¢, indeed,

i Ls’r(Ln) 1w o T™ = i Ls(pn)
n=1 n=1

Z f: Z Ls(‘pk)

Pk

2 i(A(% +1) - A(zn))L_s(_‘PMD_)

ne1 PA(2n+1)
> i A(2n + 1)Ls((pA(2n+1)).
el 2¢A(2n+1)

Now, by (4) of Lemma 2.5,

= 1 1
m(lpa@nsy ST+ 1)) 21~ =
A2n41
By the Borel-Cantelli lemma, for a.e. z € W, 3nx = ng(x) — oo such that
Va@ne+){(x) T (20 + 1) Vk.
It follows that

A@2nk + D Ls(pa@nitn) o A2 + 1)L, (D(2n0k + 1))

20 A(2nx+1) - 2f(2nk +1)
A(2n; + V) L(B(2ny + 2))
= b f 2.5
Bne 7 9) y (3) of Lemma
A(2ng + 1) Ly(B(2ng + 1)) )
~ Banyr1 = 4.
B(zng 1 1) Vk since ban, +1

Now B(2n+1) = A(2n+ 1)2”6°ZZ=1 Ve whence as n — 00

B(2n+1) Ot m VAR — ooV, (14+0(1))
A(2n+1)

and
Ly(B(2n + 1)) = e*Vaito()
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since log B(2n + 1) = o (1 + 0(1)).
It follows that

B(2n+1)
whence o
L
Z S(n) 1W o Tn =00
n
n=1
a.e. and T is {Ls(n)/n}-conservative. [ |

Remark: The interested reader may generalise Proposition 2.6 (with analogous

proof) to show that given an increasing slowly varying function z — L(z), a
sequence k, — oo and sets K, C [0, k,] with |K,, N[0, ky]|kr/L(k,), but without
arithmetic progressions of length d+ 1, then for every € > 0 there is an odometer

which is {1/L(n)!*¢}-conservative but has d-wandering sets.

[A-F-S]

[B]

(Ch)

[Ei-Haj-Hal]

[Ex]
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