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ABSTRACT 

We discuss the concept of multiple recurrence, considering an ergodic ver- 

sion of a conjecture  of Erd6s.  This conjecture applies to infinite measure 

preserving transformations. We prove a resul t  stronger than the ergodic 

conjecture for the class of Markov shifts and show by example that our  

stronger result is not t rue  for all  measure preserving transformations. 

A r i t h m e t i c  p r o g r e s s i o n s  a n d  a c o n j e c t u r e  o f  Erd6s  

An a r i t h m e t i c  p r o g r e s s i o n  o f  l e n g t h  d in N is a d-tuple (xl ,  x 2 , . . . ,  Xd) E N d 

such that xk -- x l  + (k - 1)y (2 < k < d). The gap  of the arithmetic progression 

x + (k - 1)y (2 < k < d) is y. Analogous definitions can be made in an arbitrary 

commutat ive  semigroup. 

Evidently (Xl, x 2 , . . . ,  Xd) E N d is an arithmetic progression iff xk + xk+2 = 

2Xk+lVl < k _< d - 2. One of the longstanding problems in the subject is to 

give "size" conditions on a subset K C N which ensure existence of arithmetic 

progressions in K.  For example, Szemer~di's theorem (see [Sz]) states that a sub- 

set of positive density contains arithmetic progressions of all lengths; and Roth's 
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theorem (see [R])) states that a subset K C N with ]K M [1, n]l > n / l o g l o g n  

contains arithmetic progressions of length 3. 

Recall that  Szemer~di's theorem came as a partial answer to a conjecture of 

Erd6s ([Er]): 

K C N, ~ 1In  = oc ~ K contains arithmetic progressions of all lengths. 
n E K  

It is not at present known whether K C 5t, ~ n c K  1 /n  = oo implies K 

arithmetic progressions of length 3. In the sequel, we shall consider an ergodic 

version of Erdhs' conjecture. 

The first methods of constructing progression-free subsets of N were the so- 

called d -g reedy  a l g o r i t h m s  ( d E  N). The d-greedy algorithm constructs a 

subset Gd C N without arithmetic progressions of length d by successively in- 

cluding every number, except for those which complete an arithmetic progression 

of length d. 
k For d E N prime, Gd = Kd := { ~ k = o a k d  : ak E { 0 , 1 , . . . , d -  2}, ak --+ 0}. 

This is because (a) each n ~ Kd  completes an arithmetic progression of length d 

in Kd N [0, n] U (n}, and (b) for d prime, Kd contains no arithmetic progressions 

of length d. 

Remarks:  

(1) Let B,~ :=- (1Kd(0), . . . ,  1g~(d n -- 1)); then 

BI = 1, Bn+l  = B n , . . . , B , ~ 0 , . . . , 0 .  

d--l-times d'~-times 

This concatenation also defines a cutting and stacking construction of a measure 

preserving transformation (see [Fr]) to which we shall return. 

(2) The d-greedy algorithms do not provide large progression-free sets: ]Gd M 

[1, n]] x n l°g(d-l)/log d, whereas Behrend (see [e]) has constructed a progression- 

free subset B C N with IBM [1,hi] > >  n / e  e l v ' i ~  for some c > 0. 

(3) It is possible that some kind of a random greedy algorithm may provide 

larger progression-free sets. 

d - R e c u r r e n c e  

Let (X, B, m, T) be a non-singular transformation and let B E B+ (here and 

throughout for A C B we denote ,4+ :-- {A E A: re(A)  > 0}). For x E X 
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consider the collection of visit times to B VB,x := {n _> 1: Tnx C B} and for 

d E N let 

Bd = Bd(T) 

:= {x E X: Vs,x contains an arithmetic progression of length d + 1} 

= U { x e B : V B , ~ D { k , k + n , . . . , k + d n }  
k,n>_l 

= U N T-'B. 
k = l  n = l  j=0  

Evidently Bd = 0 iff B E B is a d -wa n d e r i n g  set  in the sense that  

B A T - k B n . . . M T - d k B = O  m o d m V k >  1. 

Using the non-singular property of T, we see easily that m(Ba) > 0 if and only 

if m (B  A T - r i B  A . . .  MT-dnB) > 0 for some n > 1. 

Accordingly, we call the non-singular transformation (X, B, m, T) d - r e c u r r e n t  

if for every B E B+, 3n > 1 such that 

m(B M T-'~B M ...  M T-dnB) > O. 

Note that  conservativity (Poincar~ recurrence) is 1-recurrence. 

If the non-singular transformation (X, B, m, T) is not d-recurrent, then 3 a 

d-wandering set of positive measure, and indeed (see the Hopf d-decomposition 

below), if T is conservative and ergodic, then X is a union of such sets modm.  

We call (X, B, m, T) m u l t i p l y  r e c u r r e n t  if it is d-recurrent Vd > 1. 

If (X, B, m, T) is an ergodic probability preserving transformation and B C 

B+, then by Birkhoff's ergodic theorem, VB,x has positive density in N for a.e. 

x C X and therefore by Szemer~di's theorem contains arithmetic progressions of 

all lengths. This shows that  m(Bd) = 1 Vd > 1 and that (X, B, m, T) is multiply 

recurrent. Furstenberg has given an ergodic proof that probability preserving 

transformations are multiply recurrent and deduced Szemer~di's theorem from 

this (see [~1]  and [~2]) .  

The question now arises as to which infinite measure preserving transforma- 

tions are multiply recurrent. 

Roth's theorem has an ergodic version: if (X, B, m, T) is a conservative, ergodic 

measure preserving transformation such that  

n--1 
log log n X"" 1 T k 

l imsup Z_, J-A O > 0 

k : 0  
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a.e. for some (and hence all) A E B, 0 < re(A) < oc, then T is 2-recurrent. This 

is proved by applying Roth 's  theorem to a.e. VA,x. 

We now return to the measure preserving transformation defined by the cutt ing 

and stacking (see [Fr]) specified by the d-greedy algorithm (d prime) mentioned 

in Remark 1 (above). This is a piecewise translation T: R --+ R defined in stages 

start ing with the 0 th stage where we have the unit interval El(0) = I .  At the 

n th stage, we have a "column" of disjoint intervals C = ( E l ( n ) , . . .  ,Ed,,(n)), 
each of length 1/(d - 1) '~ and a piecewise translation T: Ek(n) --+ Ek+l(n) (1 < 

k _< d n - 1). At the next stage, we extend the definition of T by cutting the 

column into d -  1 columns Cj: = (E~J)(n),... ,E(J,,)(n)) (1 < j < d -  1) where 

each E (j) (n) is an interval of length 1 / ( d -  1) n+l and T: E (j) (n) --+ k+l E (j) (n) 
(0 < k <  d n- l ,  1 < j < d). 

The (n + 1) st column is 

C '  := (C1 ,C2 , . . . ,Cd- I ,Dn) :=  (El (n  + 1) , . . .  ,Ed,~+,(n+ 1)) 

where Dn = ( D l ( n ) , . . . ,  Dd,~(n)) is a column of disjoint intervals, disjoint from 

each of the Ek(n) (1 < k < d") and each of length 1/(d - 1) n+x. The definition 

of T is extended by defining T: Ek(n + 1) --+ Ek+l(n + 1) (1 < k < d ~+1 - 1) as 

a translation where it was not already defined at stage n: i.e. for Ek(n + 1) : 

E(J)(n) ( l < j < d )  a n d E k ( n + l ) = D j ( n )  ( l _ < j < d  ~ - 1 ) .  The union of all 

the intervals used has infinite length and can be assumed to be ~. The resulting 

piecewise translation T: R --+ lt~ is a conservative, ergodic, measure preserving 

transformation. 

The construction of T is given by the concatenation in Remark 1 above. Each 

interval in each tower is either a subset of, or disjoint from the unit interval I ,  

and for each n > 0, 

(m(Cx (n) l I ) , . . . ,  m(Cd,, (n) lI)) ~ B,~ 

where Bn is as in Remark 1. 

It  follows that  (for d prime) m ( I  M T - k I  M. . .  A T-(d-1)kI) = 0Vk >_ 1 (else 

Kd would contain an arithmetic progressions of length d) and T is not (d - 1)- 

recurrent. 

We claim however that  T is ( d -  2)-recurrent. 

To see this, note first that  if A E B(R) and 3N > 1, K C {1, 2 , . . . ,  d N} such 

that  A = Uk6_g Ek(N),  then m(A M T-dn A Cl . . . fl T-(d-2)d'~ A) : m(A) / (d  - 1) 

Vn > N + 1. Since any B E B with m(B)  < c~ can be approximated arbitrarily 
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well by such sets, we have that  

re(B) 
m ( B  N T - d ~ B  n . .. n T-(d-2)d'~B) -+ ~ as n -+ co VB E B, re(B) < oo 

and that  T is ( d -  2)-recurrent. This construction and generalisations thereof are 

considered in [Ei-Haj-Hal] where they are represented as odometers (see §2). 

Let cn $. Recall from [Kr] that  a conservative, ergodic, measure preserving 

transformation T is {cn}-conse rva t ive  if ~]n~=l cur °T~ = co a.e. for some, and 

hence Vf E L~_. Note that  {1}-conservativity is the same as conservativity. 

The ergodic version of the Erd6s question is that  {1/n}-conservative, ergodic 

measure preserving transformations are multiply recurrent. It  is not hard to show 

that  the Erd6s conjecture implies the ergodic version. We do not know whether 

the converse is true. 

In §1 we prove the Erd6s conjecture for Markov shifts. Indeed for Markov 

shifts, slightly more is true: 

{1/na}-conservativity V0 < a < 1 implies multiple recurrence. 

The proof is accomplished by showing that  a Markov shift T is d-recurrent 

iff T x . . .  × T is conservative, and then showing that  for a {1/na}-conservative 
Y 

d- t imes  
Markov shift, this is the case Vd < 1/(1 - a). 

In §2, we see that  the general situation is different, exhibiting some examples 

of "infinite odometers".  

One such exhibit is a conservative, ergodic measure preserving transformation 

which is {1/n~}-conservative V0 < a < 1 but not 2-recurrent. This is constructed 

using Behrend's  sequences ([B]). 

We conclude this introduction with a "d-analogue" of the basic Hopf decom- 

position, proving a "Hopf d-decomposition". Recall from [Fu2] that  an I P - s e t  is 

a set of f o r m  {~-]kEfnk: F C N I P  I < oo}  where nl < n2  < " "  is  a prescribed 

sequence. 

PROPOSITION ("Hopf d-decomposition"): I f  ( X , B , m , T )  is a conservative, 

aperiodic, non-singular transformation and d E N, then 

(1) X = ¢d U ~d rood m where: 

¢d = ¢d(T) and ~d  = ~d(T)  E B are disjoint, T-invariant sets, ~d is a 

countable union old-wandering sets, T[¢~ is d-recurrent and 

~ - ~ m ( B n T - k B n ' " N T - d k B ) = c o  V B E B + ,  B C ~ d .  
k = l  
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(2) I f  A C 13, A C Ed(T) and re(A) > O, then the collection of  d-recurrence 

times of  A: {n > 1: m ( A  N T - h A  N . . .  n T -dnA)  > O} contains an 1P-set. 

(3) ~d(T p) = ~d(T) Vp >_ 1. 

Proof: Suppose first that B E B+ and that 

(X3 

m ( B  N T - k B  N . . .  N T - d k B )  < oo. 
k = l  

We show that  B has a d-wandering subset of positive measure. 

Indeed, for some subset B1 E B+ N B, 3N > 1 such that  

m ( B I A T - k B I N . . . N T - d k B 1 ) = O  Vk>_N.  

By Rokhlin's tower theorem (see e.g, [Fr]), 3E E B such that E, T - 1 E , . . . ,  T - N E  

are disjoint, and 

m x \ U r - k E  < - - - ~  
k=O 

It follows that  30 < i < N such that  

B2 :=  B1 n T - i E  E B+. 

Clearly Vk > N: 

re(B2 B T - k  B2 n . . . N T -dk  B2 ) ~ re(B1 A T - k  B1 n . . . n T -dk  B1) = O, 

and for l < k < N ,  

m(B2 n T - k B 2  n . . . n T-dkB2)  < m ( E  N T - k E )  = O. 

The collection ~/~d = Wd(T)  of d-wandering sets (under T) is a T-invariant, 

hereditary subcollection of B. A classical exhaustion argument shows that  3 ~  d E 

B, a countable union of d-wandering sets, such that  any W E//Vd satisfies W C ~d 

mod m. Since T-1)/~d = I/Yd, we have that T - l ~ d  C ~ d  whence by conservativ- 

ity T - l ~ d  = ~ d  rood m. 

By the first part of the proof, if B E B and ~k°~=l m ( B N T - k B O  . . .  N T - d k B )  < 

~ ,  then B C ~d  mod m, whence ~d := X \ ~d  satisfies statement (1). 

To show (2), fix A E B, m(A)  > 0, A C Ed(T). Choosenx >_ 1 such that  
m ( A  n T - n l A  O ""  O T - d n l A )  > 0 and set A1 := A N T- '~IA n . . .  n T - d ' ~ A .  

Since Ax C £a(T), 3n2 > n~ such that  re(A1 NT-n2A1 N . . .  NT-dn2A~) > 0. Set 
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A2 := A1 N T-n2A1 n .. .  O T-dn2A1 and continue, finding n2 < n3 < n4 < . . .  

and A3, A4 , . . .  E/~ such that  

A k = A k _ l n T - ~ k A k _ l n . . . n T - d n k A k _ l ,  m(Ak)>O (k>_2).  

If F C N is finite, write F = {kl < k2 < " -  < k$-1 < ks}, NF :---- ~kEF nk. 
We have that  A n T-NF A N . . . n T-dNF A D Ak s whence 

m(A O T-NFA n . . .  NT-dNFA) ~ m(Aks) > 0 

and NF is a d-recurrence time of A. 

Finally we turn to the proof of (3). Let p > 1. Evidently Ed(T p) C Ed(T). To 

show Ed(T p) D E4(T) let A E 13, re(A) > 0, A C Cd(T). It suffices to show that  

3 n > 1 divisible by p such that  m(A n T-~A n . . .  n T-dnA) > O. 

To do this, let nl < n2 < . . .  be as in (2). We claim 3 F C {1, 2 , . . .  , p + l }  such 

that  NF is divisible by p (else p > l ( ~ g = l  nk modp:  1 _< g < p + 1}] = p + 1). 

Thus, NF : pv and we have that  

m ( A N T - P ' A N . . .  NT-pd~A) = m ( A N T - N F A N . . .  NT-dNFA) > O. I 

Remark: In [Fu-Kat], it is shown that  if S is a probability preserving trans- 

formation, then the set of d-recurrence times for any set of positive measure 

intersects with any IP-set. 

Thus, if (X, B, m, T) is d-recurrent, (fl , ,4,p,  S) is a probability preserving 

transformation and A E B+, B C A+, then 3 n _>. 1 such that  both  

m ( A N T - n A M . . . A T - d n A )  > 0 a n d p ( B N S - n B N . . . n S - d n B )  > 0. It  

is therefore natural  to ask whether T x S is d-recurrent; and more generally 

whether any extension of T is d-recurrent. 

1. M a r k o v  shif ts  

The (two-sided) M a r k o v  shi f t  (X, B, m, T) of the stochastic matr ix  P: S × S --+ 

[0, 1] with invariant distribution {#~: s E S} is defined by 

X = S z, T = the shift, B the a-algebra of generated by c y l i n d e r s  of form 

[ so , . . . ,  s~]k := {x ~ x :  xk+~ = ~¢v0 < j < n}, 

and 

m([s0 , . . . ,  snlk) -= , so~so,s , ' ' '  pso_,,so. 
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It  follows tha t  (X,  B, m,  T)  is a measure  preserving t ransformat ion .  I t  is well- 

known tha t  T is conservat ive and ergodic iff P is irreducible and recurrent  (see 

[Ch], and  [A]). We'l l  call T m i x i n g  if the corresponding s tochast ic  ma t r ix  P is 

irreducible,  recurrent  and aperiodic.  

Let  (X, B, m,  T)  be the conservative,  ergodic Markov shift of the s tochast ic  

ma t r i x  P .  For d > 1, the Car tes ian  produc t  t rans format ion  T x --- × T is ei ther  
% • 

d-t imes 
conservat ive  or to ta l ly  dissipative (see [A], [Kak-P]). It  is the Markov shift of the  

s tochast ic  ma t r i x  alp: Sd × sd __+ [0, 1] defined by 

dp(sl ..... sd),(tl ,..-,t~) -- Psi ,tl " " " P s d , t d  

and therefore  T x • • - x T is conservative iff dp is recurrent ,  i.e. 
Y 

d-t imes 

O 0  

V TM ?)(n)d = O0 for some, and hence all s E S. 
n = l  

Our  m a i n  result  in this section is 

THEOREM 1.1: Let d > 2. A conservative, ergodic Markov shift T is d-recurrent 
¢¢, T × ... × T is conservative. 

d-t imes 

T h e  ==v direct ion is easy. By the d-decomposit ion,  the d-recurrence of T implies 

t ha t  

oo 1 

~-"  (~)d ~ n ~  1 n T-dn[s ] )  co VS E S, 2_ ,p~ ,  s = m( [ s ]  N T - n [ s ]  n . . . .  

whence conservat iv i ty  of T × . . .  × T. 
Y 

d-t imes 
T h e  ¢= direct ion is establ ished using a weak, local d-ergodic theorem on s ta tes  

(below). 

Let  (X, B, m,  T)  be  the Markov shift of the stochast ic  ma t r ix  P:  S × S -+ [0, 1]. 

F ix  d > 1, s E S, and let A = Is]0. Normalise  so tha t  m(A) = #s = 1 and  wri te  

u(n) := m(A M T-hA)  = ,-~,8"(n), ad(n) = £ u(n) d. 
k----1 
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oo d THEOREM 1.2: Suppose that T is mixing, and t ha t  ~ k = l u ( n )  = oo, then 

V B 0 , . . . ,  Bd E B n A, 

1 
m(Bo N T-kB1 N T-2kB2 N . . .  N T-dkBd) > m ( B o ) . . ,  m(Bd). (*) aU ) 

COROLLARY 1.3: I f  0 < a < 1 and T is {1/na}-conservatiye, then T is 

d-recurrent Vd < 1/(1 - a). 

Proof (assuming Theorem 1.1): Fixing s E S and sett ing u(n) = ~-s,~"(n), it suffices 

to show tha t  ~n~__l u(n) d = co Vd < 1/(1 - a). 

To this end, suppose tha t  d < 1/(1 - a) and ~n~__l u(n) d < oo; then ad/(d - 1) 

> 1 and by Hhlder 's  inequality, 

E n ~ n~d/(d_l )7 < co 
n=l -- -- 

whence 

1 T,  ~ ~i~o < o o  

a.e. on A contradict ing {1/na}-conservat ivi ty  of T. I 

Proof of Theorem 1.1 (assuming Theorem 1.2): Fix B E B, re(B) > 0; then 

3s E S such tha t  C :=  B N [s] has positive measure. Let the period of s be u; 

then T ~ lUg_ ° T . . . .  [~] is a { 1 /n  a }-conservative, mixing Markov shift. 

~n=l  u(n) = oo where u(n) :=  p~,~ , and By conservat ivi ty of  T x . . .  x T, ~ d (~ )  

d-t~mes 
by Theorem 1.2, 

n 

1 ~ m ( C  n T-k~C n T-2k"C n . . .  n T-dk"C) ~ rn(C) d+l. m 
ad(n) k=l 

The  rest of this section is a proof  of Theorem 1.2. 

Let 

C = {[s, t l , . . .  , tn ,s]o:  n >_ O, t l , . . .  ,tn E S} 

and 
N 

`4 ---- { U Bk: B 1 , . . . ,  B N  E C disjoint}. 
k=l  

It  follows from the conservativity of T tha t  .4 generates B n A in the sense tha t  

V B E B N A ,  e > O ,  3 B ' E A : m ( B A B ' ) < e .  
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LEMMA 1.4: (*) holds for B 0 , . . . ,  Bd E A .  

Proof:  I t  is sufficient to  show tha t  (*) holds for B o , . . . ,  B d  E C. Suppose  t ha t  

B j  = [s,t~ j),  ÷(J) s]o (0 < j < d), • • • , ° l ) , j  ~ - -  - -  

and t h a t  k > n j V 0 < j < d ; t h e n  

m (  Bo M T - k  B1 M . . . fq T - d k  Bd) 

=Ps,t~o) "" "" (o) . (k-no)  •ps,t~) . . . ~  (1) 7) (k-n1) "". ~)(k--nd-~). (d) "" "p~(~) ° 
F i n  0 ~sFS~B / '~n  1 ,8Y8,8  t" 8~8 x'S~tl ~nd ~u 

= . ~ ( B 0 ) . . -  m(Bd)~(k  - n 0 ) . . -  ~(k - nd-~).  

To comple te  the  proof  of the  lemma,  we mus t  show tha t  

n 

~-'~ u (k  - n o ) ' "  u(k  - nd-1)  "~ ad(n) Yn0, . . .  ,rid-1 E N. 
k = l  

By HSlder 's  inequality, 

~-~ ~(k - n o ) . . ,  u(k - rid-l) < ad(n). 
k = l  

We now establ ish the  reverse a sympto t i c  inequality. 

T h e  Car tes ian  p roduc t  t r ans fo rmat ion  S :-- T x . . .  x T is a measure  pre- 

d - t i m e s  

serving t r ans fo rma t ion  of the Ca r t e s i an  produc t  space ( X  d, ]34, I-t) where ]3d := 

]3 ® . - .  Q ]3 and # :-- m x . . .  x m.  I t  is also a Markov shift of an irreducible,  
• J • • Y 

d - t i m e s  d - t i m e s  

aper iodic  t rans i t ion  matr ix .  
T h e  condit ion ~-~,~°°=1 u ( n )  d ---- oo implies tha t  S is conservat ive and  ergodic 

(its s tochast ic  ma t r ix  being irreducible and recurrent) ,  whence ra t ional ly  ergodic 

wi th  r e tu rn  sequence ad(n) (see [A]). Since A d := A x . . .  x A is the  event  of 

d - t i m e s  

being in a cer ta in  s ta te  at  t ime  0, we have ([A]) t ha t  

n - - 1  

Z #(B N S - k C )  >~ # ( B ) # ( C ) a d ( n )  
k~-O 

VB,  C E Bd. 

Choosing C = A d and B = T - n °  A x T - n l  A x . . .  x T- '*d-I  A gives 

n- -  ! 

u(k  - n o ) . . "  u(k  - nd-1)  "~ Z # ( B  M S - k C )  > ad(n). 
k = l  k=O 

I 
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Next, for 0 < v < d, let 
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Note that 

V d - - v  

@0') := H IAO T -'k" H 1AO T jk. 
k=l  i=1 j = l  

295 

LEMMA 1.5:  

The proof of Lemma 1.5 is given after the proof of Theorem 1.2. 

P roo f  of Theorem 1.2: Our first claim is 

¶1 (*) holds for the sets Bo, . . . ,  Bd whenever BI , . . . ,  Bd • A and Bo E 13 n A. 
Fix B 1 , . . . ,  Bd E ,4, and let 

d 

Cn := 1-I 1Bj o T jk. 

It is sufficient to show that 

Ca 
a (n) 

By Lemma 1.4, 

k = l j = l  

- -  -~ re(B1).., m(Bd) weakly in L2(A). 

By Lemma 1.5, 

1£ 
ad(n) Cndm -+ m(B)m(B1) . . ,  m(Bd) VB • ,4. 

L(Cn)2dm<_/A(C(°))2dm=O(ad(n)2 ) , 

whence for every subsequence nk --+ oo there is a subsequence (also denoted) 

nk --+ oo and q E L 2 (A) such that 

1 
ad'nk \ ) ~ q weakly in L2(A). 

L eft)din = ~ m(T 'kA  n . - -  n TkA Cl A A T - k A  A . . .  n T-(d- ' )kA) = ad(n). 
k=l  
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By Lemma 1.5, 

It follows that  

Bqdrn = m(B)m(Bo) . . ,  m(B~_l)m(B~+l). . ,  m(Bd) 

/A(¢,~)2dm<_/A(¢(~'))~dm=O(ad(n)2 ), 

whence for every subsequence nk ~ cx~ there is a subsequence (also denoted) 

nk -+ cx~ and q E L2(A) such that  

1 
ad,nk, ¢n ) --4 q weakly in L2(A). 

V B C ,4, 

Bqdm = m(B)m(B1). . .m(Bd) VB c fit, 

whence q = re(B1)..,  m(Bd), and 

1 
ad(n) ¢n -4 m(B1). . .m(B4) weakly in L2(A). II 

Our next claim is: 

¶2 for each 0 < v < d, (*) holds for the sets B 0 , . . . ,  Ba whenever B . + I , . . . ,  Ba C 

fit and B 0 . . . , B ~  e BA A. 

For each u, call the claim "Claim v". We prove the claims by induction on u. 

Claim 0 is ¶1, and established. Assume Claim v -  1, and let B . + l , . . . ,  Bd C fit 

and B o . . . , B , - 1  E BN A. Set 

Cn :=  1B~_i o T -ik H 1B~÷j o T jk. 
k=l i=1 j = l  

It  is sufficient to show that  

¢n ad(n--~ -+ m(Bo)-. ,  m(B~-l)m(B~+l). . ,  m(Bd) weakly in L2(A). 

By Claim y - 1, 

1/o ad(n) Cndm --+ m(B)m(Bo). . ,  m(B,-1)m(B~+l) . . ,  m(Bd) VB e fit. 
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whence q = m(Bo) . . ,  m(B,_l )m(B~,+l) . . ,  m(Bd), and 

1 
ad(n) ¢n --~ m ( B o ) . . . m ( B , - l ) m ( B , + l ) . . . m ( B d )  weakly in L2(A). | 

Evidently, Theorem 1.2 follows from ¶2 when u = d. | 

Proof of Lemma 1.5: Throughout, we use the Markov property for {T'~A}n~z: 
if b(1),. . . ,b(~) C Z and b(1) _< b(2) _<... _< b(n) then 

( ~  A) ( N  ) 1 5 [ (  T-(b(~)-b(~-I))A) m T -b(~) = m Tb(~)A -- m A N  
\ r : l  / \ r : l  ~ r : 2  

Set 

then 

ek(~) := H 1A oTJk; 
-v~j~d-v, j~O 

/A n n / A  ¢(') = ek(~), and (¢('))2dm <_ 2 E E  ek(~)ei(u)dm. 
k = l  k = l  ~ = k  

The form of fAek(~)~(u)dm depends on the orders of the 
{ik, jg: 1 <_ i , j  _< u} and {ik, jg: 1 <_ i , j  <_ d -  u}. 

To simplify matters, set 

= 1A o T±Jk ;  

j=l 
then ek(•) = e;(u)e+(d - u), and 

and it follows from the Markov property that 

A(e;  (U)) (e + (d - L,)~ + (d - ~))dm = ( ')~[ 

fAe+(d- ,)dm. 
Accordingly, set 

~(k,g) = ~d(k,e) := {ik, je: 1 < i , j  < d} C N2d. 

Define g(k,~): Nd × {0, 1} --+ 12d(k,g) by Yk,e(j,e) = (1 - e)jk + ejL 

sets 
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Definition: A bijection co: Nd x {0, 1} --+ N2a which satisfies co(i, e) < co(i + 1, e) 
(i < d - 1, e = 0, 1) is called a d m i s s i b l e .  

Let be denote  the  collection of admissible bijections co: Nd x {0, 1} ~ N2a. 

An admissible bijection co • ba o r d e r s  f~a(k, g) if ik <_ je  iff co(i, 0) < co(j, 1). 
For w • bd, set 

D(co) := {(k,g) • k < g, co orders 

To describe D(co), let 

Fd := {p/q: 0 < p < q < d} 

be the F a r e y  s e q u e n c e  of order d. Write 

Fd = {0 := r(o d) < r~ d) < ' "  < r (d) = 1}. Na 

We claim first tha t  

(1) 3j  < Nd, D(w) = {(k,e) C N2: k /e  E (rj ,rj+l]}.  

To see this let 

= max - j(>_O), & b(w)= rain -J 
a(w) i,j~Na, ,4i,o)>~(j,1) i i,jer%, ~o(i,0)<~o(j,1) i" 

Evidently,  a(w) < b(w) are neighbouring elements of Fd, and by definition, 

D(co) = {(k,e)  • N2: k _< e, ~ < Vco(i,0) < co(j, 1), ~ > Vco(i,0) > co(j, 1)} 

k 
= {(k,e)  • N2: k < e, a(co) < ~ _ b(co)}, m 

Suppose tha t  1 < d' < d. It follows from (1) tha t  Vco • bd~ 3co' • bd, such tha t  

D(co) C D(co'). 
,(o,) . N2d -* ftd(k,g) by Given co • bd, (k,£) • D(co), define "(k,t)" 

,ff(oa) CO--1. (k,t) = N(k,t) o 

Sett ing co- l ( j )  = (nj,  ej), we have 

ri-(~) t,;~ o c o - l ( j )  = ~ j [ (1  -- e j ) k - t - e j e ] .  (k,~)vaJ = N(k,~) 
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Next,  for 1 <_ j < 2d, 

¢(•o) 7r(~) ( ~  7r(~) /~ 1) (k,e)(J) := (k,e)t:H - (k,e)~J - 

= ~j[(1  - - e j ) k  + eft] - t~j-1 [(1 - Ej-1)]¢ Jr- h-lg] 
= (aj,  (k, e)) 

~-(,0 l0 ~ where (k,0~ J := 0, a l  = ( h i ( 1 -  ~l),t~lel) and 

~j  = a j ( ~ )  : =  ( . ~ ( 1  - q )  - . ~ _ ~ ( 1  - ~ j_~) ,  ~ j ~ j  - ~ j _ ~ j _ , )  ( j  _> 2).  

Our  nex t  claim is 

(2) 
2d £+ ÷ % (d)Q (d)dm = H u((aj, (k,e)))V(k,~) e D(w), 

j= l  

w E b d .  

To see this 

e+(d)e+(d)dm A A T -(k,n 
j----1 

2d (w) . 
= H m ( A  A T-¢(k,~)O)A) 

j = l  

2d 

= H u((aj, (k, e))). I 
~=1 

The  vectors  {aj(w)}2d=l are non-zero. Indeed, if a l  = O then  el ---- 1 ---- 0, 

and if aj (w) = 0 for some j _> 2 then  it follows f rom the definition of a j  t ha t  

w - l ( j )  ---- w - l ( j  -- 1),  contradic t ing the bi ject ivi ty of w. 

If ai and a j  are l inearly dependent ,  then  ai c< aj in the sense t ha t  ai = qaj for 

some q E Q. 

We need to know tha t  

(3) Vj0 E N2a, I{J E N2d: aj o( ajo}l < d. 

Indeed,  the  vectors  occurr ing as aj are of form (1, 0), (0, 1), (r, - s )  and  ( - r ,  s) 

where  1 < r, s < d, and we have 

= ~T (~) " ' "  i) (~ 1)k; aj (1,0) when (k,OU) -- ~k, ~TI~),)( j + = + 

7r ( ' )  rs~ 7r (~) /~ 1) ( t~+ 1)t; aj  = (0, 1) when (k ,0u j  = ~g, (k,g)~:/+ = 

= 7r (~) /s 1) rk;  a j  ( r , - s )  when rr(~)(k,O ~JI~j = M, (k,O~j + = 
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a s : (--r, 8) when 7r (~) (=~ 7r (~) "" 1) st. (k,e)tiH = rk, (k,e)U + --- 
In case e.g. asl,aj~,...,aSN (x ( r , - -s)  then 3pl,p2,.. . ,pN >_ 1, p~u ~ p~,, 

(nu ~ v') such that  

7r (~) (= ~ p.se, -(~) 1) = p~rk (k,e) ~:W ) = "(k,e) (J~' + 

whence Nr, Ns < d and N < d/r V s. 1 

Consequently,  for each w C bd, 

{as(w): 1 <_ j < 2d} = {a~l)(w),a~2)(w): 1 <_ j < d} 

where a~ 1)(~) and a~ ~)(~) are linearly independent W _< j _< a. 
We have now established the necessary machinery to complete the proof  of 

L e m m a  1.5. 

Assume tha t  v >_ d - u. For each w E b~, let w' E bd-, be such tha t  D(w) C 
D(w'). 

Since {(k,g) C 1~: k _< 6} = LJ~cb. D(w) (a disjoint union), we have: 

n n 

k = l  e=k  

w e b .  (k ,d)ED(w) ,  k , g<n  

where 

For each w c b.,  

E /A Ck(V)ce(v)dm 

--  Z fa,+~ ( v ) , ~ [ ( ~ ) a . ~  fA "+~ (d-  .),,+(a- ~)dm 
(k,e)eD(~)nN~. 

2v 2 ( d - v )  

Z Hu((as(~),(k,e))) I-[ u((as(~'),(k,e))) 
(k,e)eD(.,)n~ S=I j= l  

d 

E Hu({a~l)'(k'~')))u((a~ 2)'(k'~))) 
(k,e)ED(w)MN2 j = l  

(1) (~),2d (1) (5) 2~ ( a ~ l ) ( j ) , a ~ ) ,  ,,.~(d-~) 
aj ,aj tj=l {aj (w),aj (w)} j_ lU = t 02 ) ~ j = l  " 
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Consider Bj: I~ 2 -+ I~ 2 defined by (Bjx)i  := (x,-(i) \  (i uj / 
injective. Let K > 0 be such that IIBjxll~ <_ KIIxllooVx,j. 

By HSlder's inequality, 

= 1,2) which is 

d 1 

- - < H (  E u((a~l)'(k'~)))du((a~2)'(k'~)))d) a 
/=1 (k,t)cD(w)nN~ 

z )1 
= 1-I ~ (k l~ (e )  ~ 

j = l  (k,£)eBj(D(w)NI~.) 

<- Z u(kl%(eV 

= ad(Kn) 2. 

To complete the proof of the lemma, we must show that ad(Kn) ---- O(ad(n)) as 
n --+ (X). 

To see this, note first that Vk ---- u g is a recurrent renewal sequence and so 

3 1 = c 0  > _ c l _ > ' " > _ c n $ 0 s u c h t h a t  ~k=0'~ v k c n - k = l V n _ > O .  It can be shown 

that  

1 <_ ad(n)L(n) < e2 Vn >_ 1 
n 

n--1 where L(n) :-- ~k=0  ck. It follows that for K > 1, 

Ke2n Ke2n 
ad(gn)  < L(gn--~ <- ~ <- ge2ad(n)" | 

2. I n f i n i t e  o d o m e t e r s  

Definition: ( b l , b 2 , . . . ) - a d i c  o d o m e t e r .  For bk _> 1 define 

oo 

= ~ ( b l , b 2 , . . . ) : =  I I { 0 ,  1 , . . . , b k ,  1}. 
k = l  

Define addition on ~ by 

(W + W')n = Wn + W~ + Cn modbn 
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where 
0, n = l o r ~ n _ l + W '  n--1 -[- ~n--1 ~ bn-1,  

e~ = 1, n >_ 2 and COn_ 1 + COln_l + £n-1 ~-- b~-l. 

It follows (see [Hew-Ros]) that 12 equipped with the product topology is a compact 

topological group. 

It is called the (group of) (bl, b2,... )-adic in tegers  since 

OO 

Z+ ~- f~0 :---- {w • ~: w~ --+ 0} by w ~-~ ~ B ( n ) W n  
n : l  

where B(1) = 1, B ( n )  = b l b 2 " . b ~ - i  (n  > 2), 

- 1  ++ (bl - 1, b 2 -  1 , . . . )  

and 

- N -  (w • ~: b n -  1 -  w. --~ 0} = (bl - 1, b2 - 1 , . . . )  - ~0. 

The symmetric product probability measure is a Haar measure on ~. 

The (bl, b2,. . .  )-adic a d d i n g  mach ine  (or o d o m e t e r )  T: f~ --+ ~ is TX = X+I 

where 1 := (1,0). 

Now let 1 < bn (n _> 1) and let T be the (bl,bu,. . .)-adic odometer on 

~(b l ,b2 , . . . ) .  Suppose that 0 • Kn C Z+N[0,  b n - 1 ]  (n > 1) and let W :-- 

(x • ~(b i ,b2 , . . . ) :  x~ • K ,  Vn > t}. 
Our first result in this section is that all points of W excepting possibly one re- 

turn to W under positive iterations of T, and that the first return transformation 

on W is itself isomorphic to an odometer. 

Let an := IKn] and write: 

= ( o  = t o ( n )  < . . .  < 

j" tk+l(n) " t k ( n ) ,  k < an - 1, 
c~(n,  k) / b~ - t a ~ - l ( n ) ,  k = an - 1. 

Note that  12(al, a2 , . . .  ) ~ W by x = (x l ,  x 2 , . . .  ) ~ t ( x )  = (t~ 1 (1), t~ 2 (2) , . . . ) .  

Accordingly, define A ( n )  (n  >_ 1) by A(1) = 1, A ( n )  = a l a 2 . . ' a n - 1  (n  >__ 2). 

PROPOSITION 2.1: S u p p o s e  that x • f~(a l ,a2 , . . . )  and that ~(x) := 

min{n _> 1: x~ < a,~ - 1} < ec; then 

~o(t(x)) := min{n >_ 1: T'~( t (x ) )  • W }  = ~o( t (x ) , x t ( , ) )  
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where 

and 

k - 1  

~(k , j )  = E B(i)a( i ,  ai - 1) + B(k)o~(k,j) 
i=1 

Tw( t (x ) )  := T~(t(x))t(x) = t(TX) 

where T is the (al, a2, . . .  )-adic odometer on gl(al, a2,. • • ). 

Thus, the adding machine T with digits bl, b2, . . ,  equipped with the a-finite 

invariant measure m with m ( W )  = 1 is isomorphic to a tower over T (equipped 

with Haar  measure on ~) with height function ~ as above (see [Kak]). 

We call the measure preserving transformation (12(b1,b2,...),13, m , T )  the 

in f in i te  o d o m e t e r  with d ig i t s  bl, b2,. . ,  and b a s e  se t s  K1, K 2 , . . . .  

Remarks: 

(1) The measure preserving transformation "defined by the d-greedy algo- 

ri thm" is isomorphic to an infinite odometer with digits bn = d and base sets 

K s  = { 0 , 1 , . . . , d -  2} Vn > 1. 

(2) The infinite odometer with digits bl,b2, . . ,  and base sets K 1 , K 2 , . . .  is 

isomorphic to the cutting and stacking construction defined by 

Bo := 1, Bn+l = B,~(1K~(O)),B~(1K~(1)),...  ,Bn(1K~(bn - 1)) 

where Bn(1) := B~ and B~(0) :-- 0 IB"l. 

(3) It  can be shown that  an infinite odometer is of p o s i t i v e  t y p e  in the sense 

that  l i m s u p ~ _ ~  m ( A  n T - ~ A )  > OVA E 13 re(A) > 0 (see [Ham-O]) iff 

1 
l imsupsup  ;77-~]{x E Kn: x + t E Ks}[ > 0. 

n--~oo tffN 

This is evidently the case when liminfn_+~ IK~I < oo, in which case it can be 

shown that  the infinite odometer enjoys the stronger property of p a r t i a l  r i g id i t y  

in the sense of [A-F-S]. 

By corollary 1.4 of [A-F-S], all Cartesian products T × . . .  × T (d _> 1) of a 
Y 

d-t imes 
partially rigid measure preserving transformation T are conservative. 

The next proposition generalises this. 

PROPOSITION 2.2: Suppose that (X, #3, m, T)  is an invertible, conservative, 

ergodic measure preserving transformation of positive type, then T x . . .  × T 
• t 

d-t imes 
is of positive type (and hence conservative) Vd > 1. 
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Proo£ Fix d > 1 and let S := T × . . .  x T be a measure preserving transfor- 
Y 

d- t imes  

mation of the Cartesian product s p a c e  ( X  d, •d, ].t) where 134 := B ® . . .  ® B and 

d - t imes  
# : = m x . - - x m .  

d - t i m e s  
Let 

Zd := {A E Bd: It(A) < co, #(A n S-'~A) -+ 0 as n ~ oo}. 

A classical exhaustion argument shows that 3Za E B, a countable union of sets 

in Zd, such that any A E z~ d satisfies A C Zd mod #. It follows that 

~(B n s -~C)  --+ o VB, C E sd n Zett(B), t~(C) < oo 

whence {A E B: A c Zd#(A) < oo} = Zd. 
Since T "1 × -.- x T'~Zd = ZdV(n l , . . . ,  rid) E Z d, we have that 

T n~ x...xT~Zd=Zd mod# V( n l , . . . , n d )  E Z  d. 

The ergodicity of this Z d action shows that either Zd = X d m o d #  or #(Zd) = O. 

Since sets of form A d (A E B, 0 < re(A) < oo) are not in Zd, we must have 

that #(Zd) = 0. Thus S is of positive type. | 

Thus, all Cartesian products of positive-type infinite odometers are conserva- 

tive. The next proposition (2.3) shows, however, that  this does not imply their 

{c,~}-conservativity for any {cn}. 

PROPOSITION 2.3: For any c,~ $ O, 3 a positive-type infinite odometer which is 

{ c~ }-dissipative. 

Proof: Choose b~ _> 2 such that eB(~) _< 1/4 ~ (where B ( n +  1) := bl ""  bn), and 

let T be the infinite odometer with digits b~ and base sets K~ = {0, 1}; which is 

of positive-type by Remark 3 above. 

On W, we have 

oo co oo 2k+1--1 co 

Ec I oT =Ec  =E E c o-<E2%  
n = l  n = l  k = 0  n = 2  k k = 0  

n - 1  
where qon := ~-~k=0 ~O o T~.  

Now, {1, 
~ ( X )  = (~ (e (x ) ,Xe(x ) )  = E ~ ( : ~  - 1  B(k)(bk - 1 ) +  B ( e ) ( x ) ,  

e(x) = 1, 
else, 
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so ~(x) = 2B(g(x))  - 1 > B(e(x)) and 

n 

~2" (X) _) E B(£(()) = E 2 n - k B ( k )  )- B ( n ) ,  

(~1 ........ )e{o,1}n "{i t  k=l 

whence 

c~lw o T ~ < E 2kcB(k) < (X:). 
n=l  k=0 

PROPOSITION 2.4: Suppose that d > 2 and for each n > 1, Kn C [0, (bn - 1)/2] 

and Kn has no arithmetic progressions of length d + 1 in N, Then W has no 

arithmetic progressions of length d + 1 in f~(bl, b2, . . .  ) and W E Wd(T). 

Proof: Suppose first tha t  x,y, z C W and tha t  z - y -- y - x in ~(bl, b2,... ), 
equivalently x + z -- 2y. Since w~ <_ (bn - 1)/2 Vn _~ 1, we have tha t  (x ÷ z)n = 

xn + zn and (y + y)n -- 2yn Vn _> l. T h u s x ~ + z ~ = 2 y n V n > _ l .  
d T_kNw.  TkNx Next, suppose tha t  N > 1 and x E Nk=0 Set x(k) = = 

x + k g  c W. We have tha t  x ( k + 2 ) - x ( k + l )  = x ( k + l ) - x ( k )  = g in 

f~(bl, b2 , . . .  ), equivalently: 

x ( k ) + x ( k + 2 ) = 2 x ( k  + 1) (0 < k < d -  2). 

By the above, Vn k 1,0 < k < d - 2 :  xn(k)+xn(k+2) -- 2 x n ( k + l ) ,  equivalently: 

xn(k + 2) - xn(k + 1) = xn(k + 1) - xn(k) and x n ( 0 ) , . . . ,  xn(d) are in ar i thmetic  

progression. It follows from the assumption tha t  x~(0) . . . . .  xn(d)Vn > 1, 

whence x(0) . . . . .  x(d) and N = 0 contradict ing N > 1. II 

The  rest of the section is devoted to the advertised construct ion of an infinite 

odometer  which is {1/na}-conservat ive V0 < a < 1, but  not 2-recurrent.  

LEMMA 2.5: Suppose that s u p K n  ~ bn and that b~ > 2a~; then 

ak --2 

(1) E ~(k, j)  × B(k),  
j=0 

(2) 
ak --2 

1 
F(n) :=  A(n) A(k) E ~(k, j)  x B(n), 

k=l j=0 

(a) 
an+l --2 

F ( n ) : = P ( n ) +  E ¢fl(n + l ,k)  ~ B(n + l), 
k=0 
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(4) 

(flA(n+l) - - - -  r(n)+~o(a1-1,... ,a,~-1,x~+l,... ) 

Proof'. 
(1) We have 

w.p.1 _1 

--~+' F(n)+~(n+l,Xn+l). 

ak--2 ak--2 (k--1 

¢p(k,j) = ~ ,  . i~=lB(i-1)a(i,  a i - 1 ) + B ( k - 1 ) a ( k , j ) )  

k - 1  ak--2 

= (ak - 1 ) E B ( i -  1)a(i, ai - 1) + B ( k -  1) E a(k,j) 
i=1 j=O 

whence 

and 

since 

a k - 2  a k - 2  

E ~(k,j) > B(k - 1) E a(k,j) = B(k - 1)t~k_, × B(k), 
j=o j=o 

(2) is seen thus: 

ak --2 k-1  

E ~(k,j) < ak E B ( i )  + B(k) 
j = 0  i=1 

k-1  S ( i )  
= B(k) + a k B ( k -  1) E B ~ :  1) 

i=1 

k--1 
1 

<__ B(k) + akB(k - 1) E 2k-i-1 
i=1 

<_ B(k) + 2akB(k - 1) -.~ B(k). 

n ak--2 
F(n) = A(n) E 1 A(k) E ~(k,j) 

k = l  j=O 

B(k) 
A(n) ~ A(k) 

k=l 

v B ( n ) ( l + ~ .  A(n)B(k)) 
A k=l B(n)A(k) 

× B(n) 

A(n)B(k) 1 
B(n)A(k) <- 2 '~------~" 
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(3) is established using (1): 

an+l  --2 

F(n)  := P(n)  + ~ ~o(n + 1, k) × B(n) + B(n + 1) × B(n + 1). 
k=0 

n To see (4), for n > 1 write 12n := 1-Ik=l{O, 1, . . . ,ak - 1}; then Vw • D and 

n > l ,  
{ ( ( rkco) l , . . .  (rkca)n): 0 < k < A(n + 1) - 1} = f~n. 

Moreover, if 0 < k < A(n + 1 ) -  1 and (rkw)j = a j -  1 (1 < j < n) then 

(Tkho)j = COj Vj ~___ n + 1. It follows tha t  

(wl . . . . . . .  ) e f~  \{(al--1 . . . . . . .  --1)} 

+ ¢p(al -- 1,.. . ,  a n  - -  1 , W n + l , - - -  ), 

whence 

(,.,~ .. . . . . .  )ca~ -.{(a,-1 ..... ,~,~-1)} 

= L I { ( W l ' ' ' "  'Odn) • a n ' e ( c ° )  = k } l ~ ° ( k ' C O k )  

k=l 
a k - 2  

= a k + l . . . a N V "  ( r(n). | 

k=l j=0 

PROPOSITION 2.6: 3c > 0 and a conservative, ergodic measupe preserving trans- 
formation which is {ec ~ 2  n/n}-conservative and not 2-recurrent. 

Remark: In part icular ,  this conservative, ergodie measure preserving transfor- 

mat ion  is { Jz}-conservat ive V0 < a < 1. 

Proof.- By Behrend 's  theorem (see [B]), 3c > 0 and 

n 
Vn_>l ,  3 K c N N [ 0 ,  n], ]K I -  Lc(n) 

without  a r i thmet ic  progressions of length 3 where Lc(n) := eClV/i7~=n. We use 

this as follows to define a suitable infinite odometer  T. 

The  infinite odometer  will have digits ( b l , b2 , . . . )  and base set W = 

K1 x /'£2 × "-- where IK~I = an and m a x K n  < ( b ~ -  1)/2. By  Proposi t ion 

2.4 it will not  be 2-recurrent.  
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Set b2n+l = 4 and K2n+l = {0, 1}. 

Next,  we define K2n and b2n. For n ~ 1 set an := 2~2; then an/n ~ oo and 

~k=ln a~ ~ a n~ Vs > 0. Set a2n = e ~ and b2n = a2nLc(a2n). Using Behrend 's  

theorem as above, choose sets K2~ C N(n >_ 1) without  ar i thmetic  progressions 

of length 3 such tha t  IK2n[ -- a2n, max  K2n ~ b2n/2. 
We claim tha t  T is {Ls(n)/n}-eonservative Vs > c, indeed, 

-~ L~(n) 1 w  o T n = 
n 

n=l  n = l  ~On 
OO 

-> E E Ls( k) ~k 
n = l  A(2n)<k<A(2n+l) 

C O  

> E ( A ( 2 n  + 1) - A(2n)) Ls(99A(2n+l)) 
n = l  ~PA(2n+I) 

-~ A(2n + 1)Ls(gPA(2n+1)) > 
n=l 2~PA(2n+I) 

Now, by (4) of Lemma 2.5, 

m([~A(2n+l) _~ F(2n + 1)]) _> 1 - 
1 1 

a2n+l 2 

By the Borel  Cantelli  lemma, for a.e. x E W, 3rt  k = nk(X) ~ O0 such tha t  

~A(2nk+l)(X) --~ F(2nk + 1) Vk. 

It follows tha t  

A(2nk + 1)Ls(~A(2nk+l)) > 
2q0A(2nk+l  ) 

A(2nk + 1)Ls(F(2nk + 1)) 

2F(2nk + 1) 

A(2nk + 1)Ls(B(2nk + 2)) 
by (3) of Lemma  2.5 

B(2nk + 2) 

v A(2nk + 1)Ls(B(2nk + 1)) Vk since b2nk+l = 4. 
B(2nk + 1) 

Now B(2n + 1) = A(2n + 1)2neCE~=l '/~, whence as n -~ oo: 

B(2n + 1) _ 2nec~-]~= 1 v r~  : ecvCS.(l+o(1)) 
A(2n + 1) 

and 
Ls(B(2n + 1)) = e 8vr5-0+°(1)) 
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since log B(2n + 1) = an(1 + o(1)). 

It  follows that  

A ( 2 n  + 1 ) L , ( B ( 2 n  + 1)) _-- e(s_c),f~,~(l+o(1) ) -+ O0 

B ( 2 n  + 1) 

whence 

-~ L , ( n )  1w o T n = oo 
n 

n = l  

a.e. and T is {Ls (n ) /n} -conserva t i ve .  | 

Remark :  The interested reader may generalise Proposition 2.6 (with analogous 

proof) to show that  given an increasing slowly varying function x F-+ L(x ) ,  a 

sequence kn --~ oc and sets Kn C [0, kn] with IKn A [0, kn][kn/L(kn) ,  but without 

ari thmetic progressions of length d +  1, then for every e > 0 there is an odometer  

which is {1/L(n) l+~}-conservat ive  but has d-wandering sets. 
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